Facile synthesis, microstructure and photophysical properties of core-shell nanostructured (SiCN)/BN nanocomposites

نویسندگان

  • Qian Zhang
  • Dechang Jia
  • Zhihua Yang
  • Delong Cai
  • Richard M. Laine
  • Qian Li
  • Yu Zhou
چکیده

Increasing structural complexity at nanoscale can permit superior control over photophysical properties in the precursor-derived semiconductors. We demonstrate here the synthesis of silicon carbonitride (SiCN)/boron nitride (BN) nanocomposites via a polymer precursor route wherein the cobalt polyamine complexes used as the catalyst, exhibiting novel composite structures and photophysical properties. High Resolution Transmission Electron Microscopy (HRTEM) analysis shows that the diameters of SiCN-BN core-shell nanocomposites and BN shells are 50‒400 nm and 5‒25 nm, respectively. BN nanosheets (BNNSs) are also observed with an average sheet size of 5‒15 nm. The photophysical properties of these nanocomposites are characterized using the UV-Vis and photoluminescence (PL) analyses. The as-produced composites have emission behavior including an emission lifetime of 2.5 ns (±20 ps) longer observed in BN doped SiCN than that seen for SiC nanoparticles. Our results suggest that the SiCN/BN nanocomposites act as semiconductor displaying superior width photoluminescence at wavelengths spanning the visible to near-infrared (NIR) spectral range (400‒700 nm), owing to the heterojunction of the interface between the SiC(N) nanowire core and the BN nanosheet shell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Polythiophene/Manganese Dioxide Nanocomposites by In-situ Core-shell Polymerization Method and Study of their Physical Properties

The present research work describes an efficient method for facile synthesis of α-MnO2 nanorods by hydrothermal method and preparation of a series of polythiophene/manganese dioxide (PTh/MnO2) nanocomposites with various α-MnO2 ratios. These nanocomposites were fabricated by in-situ oxidative polymerization method using FeCl3 as oxidant, and characterized by Fourier transformed infrared (FT-IR)...

متن کامل

Facile Synthesis and Spectroscopic Studies of SiO2-Core/ZnS-Shell Nanostructure

SiO2/ZnS core/shell nanostructures have been synthesized at room temperature by a simple wet chemical method. The prepared materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), UV–vis spectroscopic and transmission electron microscopy (TEM) studies. X-ray diffraction pattern exhibits peaks correspond to the cubic phase of ZnS. Th...

متن کامل

Facile and Efficient Self-template Synthesis of Core-coronal-shell ZnO@ZIF-8 Nanohybrid Using Ascorbic Acid and its Application for Arsenic Removal

In the present contribution, a facile and efficient protocol for synthesis a nanohybrid structure of core-coronal-shell ZnO@ZIF-8 using ascorbic acid (ZnO@AA/ZIF-8) as a new adsorbent for arsenic removal from water has been represented. For this purpose, the ZnO nanospheres were synthesized by a green and simple method followed by coating with ascorbic acid (AA) to modify their surface to achie...

متن کامل

Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals.

Nanocomposite materials provide the possibility for multifunctional properties in contrast with their more-limited single-component counterparts. Here, we report the synthesis and characterization of the first all-inorganic core/shell hybrid magnetic-optical nanoparticle, cobalt/cadmium selenide. The core/shell nanocrystals are prepared in a facile one-pot reaction, and their microstructure is ...

متن کامل

Room-temperature synthesis of nanocrystalline Ag2S and its nanocomposites with gold.

This manuscript demonstrates a room-temperature synthesis for Ag2S nanocrystals and their nanocompsites with Au and the Au could be deposited only at a single site on each Ag2S seed nanocrystal, where in contrast, Ag2S could grow homogeneously on Au seed nanocrystals, resulting in core-shell Au@Ag2S nanoparticles, which still possessed the optical properties of Au nanocrystals; this facile synt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017